

SD60-40-25

SD60-40-25 型无刷电机驱动板 使用说明书

`

SD60-40-25 型无刷电机驱动板使用说明书

1 概述

SD60-40-25 型单轴无刷电机驱动板(以下简称驱动板)用于转台三相无刷力矩电机直驱控制。安装要求电机和 SSI/BISS 编码器机械上联轴安装,驱动板上集成 SSI/BISS-C 绝对值编码器接口。

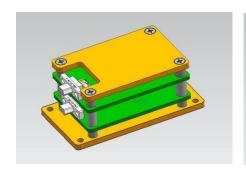
2 技术指标

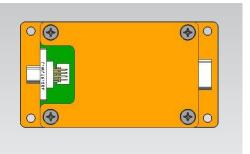
2.1 驱动板

电源输入: 28V(单电源)(DC24V~DC32V 宽电源)

输出电流: 5A 连续, 10A 峰值(10 秒)

编码器接口: 1 路 SSI/BISS-C 编码器接口


1: +5V, 2: GND, 3: CLK+, 4: CLK-, 5: DAT+, 6: DAT-


电机接口: 1 路三相无刷电机(U、V、W)

通讯控制接口: 1 路 RS422 隔离型 (R+、R-、T+、T-), 用来与客户上位机控制板通讯。 通讯控制接口: 1 路 CAN 隔离型 (CANH、CANL、CANG), 用来与客户上位机控制板通讯。 上位机调试接口: RS485 接口(非隔离)。

单板电路板外形尺寸: 60mm×40mm×25mm (长×宽×高,不含接插件), 安装尺寸: 67mm×33mm (4-Φ3.2mm)。

外形图如下图:

2.1.1 连接器接口

1) 电源和通讯接口 J1

接口为 15P, 电路板上插座型号为: J30J-15ZKW-J, 配套插头型号: J30J-15ZKL, 信号定义如下:

接点号	接点定义	信号内容	信号方向	备注	
1, 2	+28V	+24V 电源输入	输入	电源输入	
9、10	+28V_G	电源地	公共	电你	
11	RS485A	RS485 通讯信号+/A	双向	RS485 上位机调试接口	
12	RS485B	RS422 通讯信号一/B	双向		
3	RS422R+	RS422 接收信号+	输入		
4	RS422R—	RS422 接收信号-	输入		
6	RS422T+	RS422 发送信号+	输出	RS422 通讯控制接口	
5	RS422T—	RS422 发送信号-	输出		
7、8	RS422G	RS422 信号地	公共		
13	CANH	CAN 信号+	输入		
14	CANG	CAN 信号地	输入	CAN 通讯控制接口	
15	CANL	CAN 信号-	输出		

2) 电机接口 J2

接口为 9P, 电路板上插座型号为 J30J-9TJW-J, 配套插头型号: J30J-9ZKL, 信号定义如下:

接点号	接点定义	信号内容	信号方向	备注
1, 2, 6	MOT_U	电机 U 相	输出	
3、7、8	MOT_V	电机 V 相	输出	电机动力线
4、5、9	MOT_W	电机 ₩ 相	输出	

3 编码器接口 J3

接口为 9P, 电路板上插座型号为: J30J-9ZKW-J, 配套插头型号: J30J-9TJL, 编码器接口为 SSI/BISS-C 编码器接口,信号定义如下:

接点号	接点定义	信号内容	信号方向	备注
4, 5	+5V	+5V 编码器电源正	输出	+5V 电源/双绞
2, 3	GND	电源信号地	输出	〒3V 电探/双纹
9	CLK+	时钟信号+	输出	差分信号/双绞
8	CLK—	时钟信号一	输出	左刀信与/双纹
6	DAT+	数据信号+	输入	差分信号/双绞
7	DAT—	数据信号一	输入	左刀信与/双纹
1	EARTH	屏蔽地	公共	

4 接插件型号

插座定义	名称	插座型号	插头型号	备注
Ј1	电源和通讯接口	J30J-15ZKW-J	J30J-15ZKL	
J2	电机接口	Ј30Ј-9ТЈW-Ј	J30J-9ZKL	
J3	编码器接口	J30J-9ZKW-J	J30J-9TJL	

3 RS422 通讯协议

RS422 为全双工工作模式,波特率默认 115200bps,格式为 8,N,1 (8 位数据位,无校验,1 个停止位),驱动器数据帧上传时间间隔默认 1ms,驱动器数据帧接收时间间隔由上位机决定,默认 1ms。

3.1 驱动器板数据发送协议

驱动板数据发送协议对应上位机数据接收协议,驱动板定时发送数据帧的数据长度为7个字节,驱动板数据发送的字节顺序 1,2,3,4,5,6,7 上位机接收的字节顺序 1,2,3,4,5,6,7 高字节先发,低字节后发。通讯协议如下:

发送字节	字段	字段说明
1	HEADER1	固定为 0xFE
2	HEADER2	固定为 0x55
3	STS	状态字
4	POS (23:16)	
5	POS (15:8)	角位置数据,无符号 24 位
6	POS (7:0)	
7	SUM	求和校验字(占1个字节)

HEADER1 和 HEADER2:数据帧头,固定为 OxFE 和 Ox55,用来判断帧头。

STS: 状态字, 占 1 个字节, 低 4 位为心跳字段, 高 4 位为故障字段, 位域定义如下:

位定义	功能说明	
BIT0		
BIT1	TICV	2.以今氏。
BIT2	TICK	心跳字段,每发送 1 帧数据增加 1,循环0~15(0x0~0xF)
BIT3		
BIT4		
BIT5	EDDOD	- 大学生30 0 工业院 甘州 + 大陸
BIT6	ERROR	故障标识,0:无故障,其他:故障
BIT7		

POS: 角位置数据,则角位置和数值之间换算关系分别为: θ = data * 0.0001°。

SUM: 求和校验字,为字节 3~字节 6 的累加值(4 个字节累加,数据帧头不计入校验范围),再取低 8 位作为校验和。

3.2 驱动板数据接收协议

驱动控制模式为: RS422 通讯控制模式时有效,即 P1-00: 设置为 81 驱动板接数据接收协议对应上位机数据发送协议,上位机向驱动板发送的数据长度为 7 个字节,上位机发送的字节顺序为 1,2,3,4,5,6,7 驱动板接收的字节数据为 1,2,3,4,5,6,7 上位机向驱动板发送的数据协议如下:

发送字节	字段	字段说明
1	HEADER1	固定为 0xFD
2	HEADER2	固定为 OxAA
3	CODE	控制功能码
4	DATA (23:16)	
5	DATA (15:8)	控制数据,无符号 24 位
6	DATA (7:0)	
7	SUM	求和校验字(占1个字节)

HEADER1 和HEADER2:数据帧头,固定为 0xFD 和 0xAA,用来判断帧头。

CODE: 控制功能码,写入 0x00 (伺服关闭)

功能码(CODE)	控制数据(DATA)	说明
0x00	_	驱动输出关闭
0x10	扭矩指令	正向扭矩指令
0x11	扭矩指令	反向扭矩指令

每次写入 0x00, 在切换成其他功能码的时候, 驱动器尝试清除当前故障。

DATA: 控制数据,当控制功能码为 0x10 和 0x11 时(扭矩指令),控制数据用来作为电机扭矩控制指令,DATA 数据范围 $0\sim+10000$,对应物理量为 $0%\sim+100.00%$,对应电机输出扭矩范围,如下所述:

0%:表示控制电机输出零扭矩;

+100.00%: 表示控制电机输出最大扭矩;

SUM: 求和校验字,为字节 3~字节 6 的累加值(4 个字节累加,数据帧头不计入校验范围),再取低 8 位作为校验和。

4 控制方式

控制方式有 2 种

- 1) RS422 通讯控制方式
- 2) CAN 通讯控制方式

4.1 RS422 通讯控制方式

控制模式 P1-00 设置为 81 时有效。 采用通讯控制方式,如 5.2 章节所示。

参数号	参数内容	说明
P5-10	波特率	波特率: N× 100Kbps;
F 10		默认 N = 115.2,即 115.2Kbps = 115200bps;
		默 认: 0
P5-11	通讯格式	0: 8, N, 1
h9-11		1: 8, E, 1
		2: 8, 0, 1
	通讯超时时间	默认: 500ms
P5-12		0: 关闭通讯超时时间检测
P5-12		其他: 距离接收到的最后一帧有效报文的时
		间超过设定值,则自动关闭输出
P5-14	通讯协议	必须为 1
DE 16	通讯发送间隔	发送间隔: N×0.1ms
P5-16		默认 N = 10, 即 1.0ms;

测试指令

功能码(CODE)	控制数据(DATA)	说明
0x00	0x000000	FD AA 00 00 00 00 00 驱动关闭
0x10	0x000000	FD AA 10 00 00 00 10 正向 0
0x10	0x002710	FD AA 10 00 27 10 47 正向 100%
0x11	0x000000	FD AA 11 00 00 00 11 反向 0
0x11	0x002710	FD AA 11 00 27 10 48 反向 100%
0x10	0x0007D0	FD AA 10 00 07 D0 E7 正向 20%
0x11	0x0007D0	FD AA 11 00 07 D0 E8 反向 20%

4.2 CAN 通讯控制方式